240 research outputs found

    How to Detect the Signatures of Self-Gravitating Circumstellar Discs with the Atacama Large Millimetre/sub-millimetre Array

    Get PDF
    In this paper we present simulated Atacama Large Millimetre/sub-millimetre Array (ALMA) observations of self-gravitating circumstellar discs with different properties in size, mass and inclination, located in four of the most extensively studied and surveyed star-forming regions. Starting from a Smoothed Particle Hydrodynamics (SPH) simulation and representative dust opacities, we have initially constructed maps of the expected emission at sub-mm wavelengths of a large sample of discs with different properties. We have then simulated realistic observations of discs as they may appear with ALMA using the Common Astronomy Software Application ALMA simulator. We find that, with a proper combination of antenna configuration and integration time, the spiral structure characteristic of self-gravitating discs is readily detectable by ALMA over a wide range of wavelengths at distances comparable to TW Hydrae (∼50 \sim 50 \,pc), Taurus - Auriga and Ophiucus (∼140 \sim 140 \,pc) star-forming regions. However, for discs located in Orion complex (∼400 \sim 400 \,pc) only the largest discs in our sample (outer radius of 100 au) show a spatially resolved structure while the smaller ones (outer radius of 25 au) are characterized by a spiral structure that is not conclusively detectable with ALMA.Comment: 12 pages, 10 figure

    Near-IR imaging of T Cha: evidence for scattered-light disk structures at solar system scales

    Full text link
    T Chamaeleontis is a young star surrounded by a transitional disk, and a plausible candidate for ongoing planet formation. Recently, a substellar companion candidate was reported within the disk gap of this star. However, its existence remains controversial, with the counter-hypothesis that light from a high inclination disk may also be consistent with the observed data. The aim of this work is to investigate the origin of the observed closure phase signal to determine if it is best explained by a compact companion. We observed T Cha in the L and K s filters with sparse aperture masking, with 7 datasets covering a period of 3 years. A consistent closure phase signal is recovered in all L and K s datasets. Data were fit with a companion model and an inclined circumstellar disk model based on known disk parameters: both were shown to provide an adequate fit. However, the absence of expected relative motion for an orbiting body over the 3-year time baseline spanned by the observations rules out the companion model. Applying image reconstruction techniques to each dataset reveals a stationary structure consistent with forward scattering from the near edge of an inclined disk.Comment: 6 pages, 3 figures, accepted for publication in MNRAS Letter

    Brown dwarf disks with ALMA

    Get PDF
    We present ALMA continuum and spectral line data at 0.89 mm and 3.2 mm for three disks surrounding young brown dwarfs and very low mass stars in the Taurus star forming region. Dust thermal emission is detected and spatially resolved for all the three disks, while CO(J=3-2) emission is seen in two disks. We analyze the continuum visibilities and constrain the disks physical structure in dust. The results of our analysis show that the disks are relatively large, the smallest one with an outer radius of about 70 AU. The inferred disk radii, radial profiles of the dust surface density and disk to central object mass ratios lie within the ranges found for disks around more massive young stars. We derive from our observations the wavelength dependence of the millimeter dust opacity. In all the three disks data are consistent with the presence of grains with at least millimeter sizes, as also found for disks around young stars, and confirm that the early stages of the solid growth toward planetesimals occur also around very low mass objects. We discuss the implications of our findings on models of solids evolution in protoplanetary disks, on the main mechanisms proposed for the formation of brown dwarfs and very low mass stars, as well as on the potential of finding rocky and giant planets around very low mass objects.Comment: 15 pages, 10 figures, accepted for publication in Ap

    Molecular Line Emission from Accretion Disks Around YSOs

    Full text link
    In this work we model the expected molecular emission from protoplanetary disks, modifying different physical parameters, such as dust grain size, mass accretion rate, viscosity, and disk radius, to obtain observational signatures in these sources. Having in mind possible future observations, we study correlations between physical parameters and observational characteristics. Our aim is to determine the kind of observations that will allow us to extract information about the physical parameters of disks. We also present prospects for molecular line observations of protoplanetary disks, using millimeter and submillimeter interferometers (e.g., SMA or ALMA), based on our results.Comment: 6 pages, 2 figures. Proceeding of the workshop "Magnetic fields and star formation: theory versus observation", Madrid (Spain), April 21 - 25, 200

    Dense gas and exciting sources of the molecular outflow in the AFGL 437 star-forming region

    Full text link
    We present Very Large Array (VLA) high resolution observations of the NH3(1,1) and NH3(2,2) molecular transitions towards the high mass star forming region AFGL 437. Our aim was to investigate if the poorly collimated CO molecular outflow previously detected in the region is the result of a projection effect, with no intrinsic bipolarity, as suggested by Gomez et al. We complemented our observations with radio continuum archived data from the VLA at 2 and 3.6 cm, and with unpublished public data at 450 {\mu}m taken with Submillimetre Common-User Bolometer Array at the James Clerk Maxwell Telescope. Ammonia emission was found mainly in three clumps located at the south and east of the position of the compact infrared cluster of AFGL 437, where the CO outflow seemed to have its origin. One of the NH3(1,1) clumps coincides with the maximum of NH3(2,2) and with a local peak of emission at 450 {\mu}m. A near infrared source (s11) is also found at that position. Our continuum map at 2 cm shows extended elongated emission associated with the infrared source AFGL 437W. This elongated morphology and its spectral index between 3.6 and 2 cm (\simeq 0.4) suggest the presence of a jet in AFGL 437W. We suggest that several molecular bipolar outflows may exist in the region. The observed CO outflow would be the superposition of those individual outflows, which would explain its low degree of collimation observed at larger scales.Comment: 9 pages, 5 figures, 3 tables, accepted by MNRA

    G345.45+1.50: An expanding ring-like structure with massive star formation

    Full text link
    Ring-like structures in the ISM are commonly associated with high-mass stars. Kinematic studies of large structures in GMCs toward these ring-like structures may help us to understand how massive stars form. The origin and properties of the ring-like structure G345.45+1.50 is investigated through observations of the 13CO(3-2) line. The aim of the observations is to determine the kinematics in the region and to compare physical characteristics estimated from gas emission with those previously determined using dust continuum emission. The 13CO(3-2) line was mapped toward the whole ring using the APEX telescope. The ring is found to be expanding with a velocity of 1.0 km/s, containing a total mass of 6.9e3 Msun, which agrees well with that determined using 1.2 mm dust continuum emission. An expansion timescale of 3e6 yr and a total energy of 7e46 erg are estimated. The origin of the ring might have been a supernova explosion, since a 35.5 cm source, J165920-400424, is located at the center of the ring without an infrared counterpart. The ring is fragmented, and 104 clumps were identified with diameters of between 0.3 and 1.6 pc, masses of between 2.3 and 7.5e2 Msun, and densities of between 1.0e2 and 1.0e4 cm^-3. At least 18% of the clumps are forming stars, as is shown in infrared images. Assuming that the clumps can be modeled as Bonnor-Ebert spheres, 13 clumps are collapsing, and the rest of them are in hydrostatic equilibrium with an external pressure with a median value of 4e4 K cm^-3. In the region, the molecular outflow IRAS 16562-3959 is identified, with a velocity range of 38.4 km/s, total mass of 13 Msun, and kinematic energy of 7e45 erg. Finally, five filamentary structures were found at the edge of the ring with an average size of 3 pc, a width of 0.6 pc, a mass of 2e2 Msun, and a column density of 6e21 cm^-2

    High resolution observations of the outer disk around T Cha: the view from ALMA

    Full text link
    T Cha is a young star surrounded by a transitional disk with signatures of planet formation. We have obtained high-resolution and high-sensitivity ALMA observations of T Cha in the CO(3{\rm CO}(3--2)2), 13CO(3{\rm ^{13}CO}(3--2)2), and CS(7{\rm CS}(7--6)6) emission lines to reveal the spatial distribution of the gaseous disk around the star. In order to study the dust within the disk we have also obtained continuum images at 850μ\mum from the line-free channels. We have spatially resolved the outer disk around T Cha. Using the CO(3-2) emission we derive a radius of ∼\sim230 AU. We also report the detection of the 13^{13}CO(3-2) and the CS(7-8) molecular emissions, which show smaller radii than the CO(3-2) detection. The continuum observations at 850μ\mum allow the spatial resolution of the dusty disk, which shows two emission bumps separated by ∼\sim40AU, consistent with the presence of a dust gap in the inner regions of the disk, and an outer radius of ∼\sim80AU. Therefore, T Cha is surrounded by a compact dusty disk and a larger and more diffuse gaseous disk, as previously observed in other young stars. The continuum intensity profiles are different at both sides of the disk suggesting possible dust asymmetries. We derive an inclination of i(deg)=67±\pm5, and a position angle of PA (deg)= 113±\pm6, for both the gas and dust disks. The comparison of the ALMA data with radiative transfer models shows that the gas and dust components can only be simultaneously reproduced when we include a tapered edge prescription for the surface density profile. The best model suggests that most of the disk mass is placed within a radius of R<R< 50AU. Finally, we derive a dynamical mass for the central object of M∗M_{*}=1.5±\pm0.2M⊙_{\odot}, comparable to the one estimated with evolutionary models for an age of ∼\sim10Myr.Comment: 5 pages, 5 figures, accepted for publication in A&A Letter
    • …
    corecore